Тест с ответами: “Преобразования выражений”

1. Дано выражение (1,3а – 4) – (6 + 2,7а). Раскройте скобки и приведите подобные слагаемые:
а) -1,4а – 10 +
б) -10 – 4а
в) 4а – 10

2. Необходимо выполнить действия в выражении 4+(3+1+4•(2+3)):
а) 4+(3+1+4•(2+3))=26
б) 4+(3+1+4•(2+3))=28 +
в) 4-(3+1+4•(2+3))=28

3. -5х(y – 2z +5). Необходимо раскрыть скобки:
а) -5xу – 10xz + 25x
б) -5xу – 2z + 5
в) -5xу + 10xz – 25x +

4. Какое название носят рациональные выражения, которые не содержат деления на выражения с переменными и выражений с переменными в отрицательной степени:
а) целые иррациональные выражения
б) целые рациональные выражения +
в) стандартные рациональные выражения

5. -4х + 5 + 11х -8. Необходимо привести подобные слагаемые:
а) -12х + 16
б) 15х – 3
в) 7х – 3

6. Какие выражения содержат степени в своей записи:
а) выражения с целыми числами
б) выражения со степенями +
в) выражения с квадратами

7. Работу с выражениями с переменными и работу с числовыми, буквенными выражениями невозможно представить без выполнения таких преобразований:
а) тождественных +
б) основных
в) геометрических

8. Какое название носят выражения, которые содержат в записи знаки корней:
а) рациональные выражения
б) иррациональные выражения +
в) целые рациональные выражения

9. Какие из представленных преобразований проводятся с целью привести исходное выражение к виду, наиболее удобному для решения конкретной задачи:
а) практические
б) теоретические
в) тождественные +

10. После знакомства с чем возникают логарифмические выражения:
а) с тригонометрическими функциями
б) с логарифмами +
в) с корнями

11. Как называется замена исходного выражения на выражение, тождественно равное ему:
а) практическое преобразование выражения
б) теоретическое преобразование выражения
в) тождественное преобразование выражения +

12. Что могут содержать в своей записи числовые выражения и выражения с переменными:
а) кавычки
б) скобки +
в) скобы

13. 14−2•15:6−3. Необходимо вычислить значение выражения:
а) 14−2•15:6−3=6 +
б) 14+−2•15:6−3=6
в) 14−2•15:6+3=6

14. Какое название носят выражения, значения которых равны при любых значениях входящих в них переменных:
а) тождественно разные выражения
б) отчужденно равные выражения
в) тождественно равные выражения +

15. 0,5•(0,75−0,05). Необходимо вычислить значение выражения:
а) 0,5•(0,75−0,05)=0,35 +
б) 0,5•(0,75+0,05)=0,35
в) 0,5:(0,75−0,05)=0,35

16. Как называется выражения, стоящие в левой и правой частях тождества:
а) тождественно разные выражения
б) тождественно равные выражения +
в) отчужденно равные выражения

17. -5(0,8 – 1.5х) + (6-2.5x)*2. Необходимо раскрыть скобки и приведите подобные слагаемые:
а) 8 + 2.5x +
б) 8 – 2.5x
в) 2.5x

18. 1+2•(1+2•(1+2•(1−1/4))). Необходимо правильно раскрыть скобки:
а) 1+2•(1+2•(1+2•(1−1/4)))=14
б) 1+2•(1+2•(1+2•(1−1/4)))=13 +
в) 1+2•(1+2•(1+2•(1−1/4)))=15

19. Найдите ответ на предложенную задачу: На трёх полках стоят книги. На первой полке стоит а книг, на второй – на 3 книги больше, чем на первой, а на третьей – на 5 книг меньше, чем на второй. Какое количество книг стоит на трёх полках:
а) 3а – 2
б) a – 5
в) 3а + 1 +

20. 7−3+6. Правильно выполните действия:
а) 7−3+6=10 +
б) 7−3+6=-10
в) 7+3-6=10

21. 2а + 7а + 4а – 11а. Необходимо привести подобные слагаемые:
а) 2а + 2
б) 4а
в) 2а +

22. В выражении 6:2•8:3, необходимо правильно указать порядок выполнения действий:
а) сначала 6 делим на 3, это частное умножаем на 8, наконец, полученный результат делим на 2
б) сначала 6 делим на 2, это частное умножаем на 8, наконец, полученный результат делим на 3 +
в) сначала 8 делим на 2, это частное умножаем на 6, наконец, полученный результат делим на 3

23. 2а – (ЗЬ – с). Необходимо раскрыть скобки:
а) 2а – 3b – с
б) 2а + 3b + с
в) 2а – 3b + с +

24. 17−5•6:3−2+4:2. Необходимо вычислить значение выражения:
а) 17−5•6:3−2+4:2=7 +
б) 1755•6:3−2+4:2=7
в) 17−5•6:3−2-4:2=7

25. 0,2(3а – 2) + 0,5 – 0,6а. Необходимо упростить выражение:
а) 0,1а + 1
б) 1,2а – 0,1
в) 0,1 +

26. Что из представленного называют действиями первой ступени:
а) умножение и деление
б) сложение и вычитание +
в) зависит от условия задачи

27. Необходимо преобразовать выражение 2,5(-2х + 4y – z) в тождественно равное:
а) -5x + 10y – 2,5z +
б) -5x – 10y + z
в) 5x + 10y – z

28. Что из представленного называют действиями второй ступени:
а) сложение и вычитание
б) умножение и деление +
в) зависит от условия задачи

29. 13х – 4 – 4х + 2. Необходимо привести подобные слагаемые:
а) 9х – 2 +
б) 9х – 6
в) 17х + 2

30. 5+(7−2•3)•(6−4):2. Необходимо выполнить указанные действия:
а) 5+(7−2•3)•(6+4):2=6
б) 5-(7−2•3)•(6−4):2=6
в) 5+(7−2•3)•(6−4):2=6 +

Понравилась статья? Поделиться с друзьями:
Образовательные тесты с ответами
Adblock
detector